Color and Radiometry

可见光

人眼的可见光波谱范围约为370nm~730nm

蓝光:400nm,绿光:550nm,红光:650nm

光谱表示

SPD(spectral power distribution): 光谱功率分布

SPD是一个关于波长的函数,通常是做法是找到一组基函数,用于将无限维度的SPD映射到低纬度空间表示

1
2
3
4
5
6
7
8
template<int nSamples>
class CoefficientSpecturm
{
public:
<CoefficientSpecturm public method>
protected:
<CoefficientSpecturm protected data>
};
1
2
<CoefficientSpecturm protected data> =
float c[nSamples];

接下来介绍两种常用的表示方法

SampleSpectrum

这种方法是将光谱重新均匀采样来进行拟合

考虑波长为400nm~700nm的可见光,可以将区间分为N段,以30段为例,通常足以拟合比较复杂的光谱数据
sample construct

1
2
3
4
5
6
7
8
9
10
11
12
13
<Spectrum Utility Declarations> =
static const int sampledLambdaStart = 370;
static const int sampledLambdaEnd = 700;
static const int nSpectralSamples = 30;

<Spectrum Declarations> =
class SampledSpectrum : public CoefficientSpectrum<nSpectralSamples>
{
public:
<SampledSpectrum public Methods>
private:
<SampledSpectrum Private Data>
};

那么如何从一组光谱数据来构造光谱表示?

假设现在有一组光谱数据$(\lambda_i,v_i)$,表示第$i$个采样点的波长为$\lambda_i$,值为$v_i$,这些采样点往往分布不均匀

对于给定的一组光谱数据,可以构造出相应的折线图

然后将此折线图划分为30个区域,如上图:[400,410) , [410,420)….[690,700)

计算每个区域覆盖的面积和,求其平均值,得到新的采样值

1
2
3
4
5
6
7
8
9
10
static SampledSpectrum FromSampled(const float* lambda , const float* v , int n)
{
<Sort samples if unordered, use sorted for returned spectrum>

SampledSpectrum r;
for(int i = 0; i < nSpectralSamples; i++)
{
<Compute average value of given SPD over ith sample's range>
}
}
1
2
3
4
5
<Compute average value of given SPD over ith sample's range>=
// compute ith sample's range
float lambda0 = Lerp(float(i) / float(nSpectralSamples) , sampledLambdaStart , sampledLambdaEnd);
float lambda1 = Lerp(float(i+1) / float(nSpectralSamples) , sampledLambdaStart , sampledLambdaEnd);
r.c[i] = AverageSpectrumSamples(lambda, v, n, lambda0, lambda1);
1
2
3
4
5
6
7
8
9
10
11
<Spectrum Method Definitions> = 
float AverageSpectrumSamples(const float* lambda , const float* vals , int n ,
float lambdaStart , float lambdaEnd)
{
<handles case with out-of bounds range or single sample only>
float sum = 0.0f;
<Add contribute of constant segments before/after samples>
<Advance to first relevant wavelength , segment>
<Loop over wavelength sample segments and add contributes>
return sum / (lambdaEnd - lanbdaStart);
}

处理边界条件:数据的波长范围全部处于区间之外,或者原始数据只有一个采样点

1
2
3
4
<handles case with out-of bounds range or single sample only> =
if(lambdaEnd <= lambda[0]) return lambda[0];
if(lambdaStart >= lambda[n - 1]) return lambda[n - 1];
if(n == 1) return lambda[0];

对于处于数据之外的区域,将其值视为常量,即区域为方形

1
2
3
4
5
<Add contribute of constant segments before/after samples> =
if(lambdaStart < lambda[0])
sum += vals[0] * (lambda[0] - lambdaStart);
if(lambdaEnd > lambda[n - 1])
sum += vals[n - 1] * (lambdaEnd - lambda[n - 1]);

找到区间起始波长所在的数据段

1
2
3
<Advance to first relevant wavelength , segment> =
int i = 0;
while(lambdaStart > lambeda[i+1]) ++i;

计算区域覆盖的梯形面积和

1
2
3
4
5
6
7
8
9
10
11
12
<Loop over wavelength sample segments and add contributes>
#define INTERP(w,i)\
Lerp(((w) - lambda[(i)]) / (lambda[(i) + 1] - lambda[(i)]) , vals[(i)] , vals[(i) + 1])
#define SEG_AVG(wl0,wl1,i) (0.5f * (INTERP(wl0,i) + INTERP(wl1,i)))
for(; i+1 < n && lambdaEnd >= lambda[i]; i++)
{
float segStart = max(lambdaStart , lambda[i]);
float segEnd = min(lambdaEnd , lambda[i+1]);
sum += SEG_AVG(segStart,segEnd,i) * (segEnd - segStart);
}
#undef INTERP
#undef SEG_AVG

经过以上步骤,将光谱数据拟合为线性分段函数,然而,最终我们需要将光谱转化为RGB才能在显示器上显示出来

三色刺激理论认为所有人眼可视的SPD都可以精确的使用三个值$(x_\lambda,y_\lambda,z_\lambda)$表示,公式如下:

$$x_\lambda = \frac{1}{\int Y(\lambda)d\lambda}\int_\lambda S(\lambda)X(\lambda)d\lambda$$

$$y_\lambda = \frac{1}{\int Y(\lambda)d\lambda}\int_\lambda S(\lambda)Y(\lambda)d\lambda$$

$$z_\lambda = \frac{1}{\int Y(\lambda)d\lambda}\int_\lambda S(\lambda)Z(\lambda)d\lambda$$

$X(\lambda),Y(\lambda),Z(\lambda)$为光谱匹配曲线,是由国际照明委员会经过一系列实验制定的.

这三条曲线被认为与人类视网膜的三种感色视椎体细胞响应类似
spectral matching curves

两个由多种不同波长的光混合而成的光源可以表现出同样的颜色,这叫做“异谱同色”(metamerism)

尽管对于人类观察者而言,XYZ可以很好的表示SPD,然而对于光谱计算并不是一种好的方案

XYZ的乘积与SPD的乘积再计算得到的XYZ相差很大

在SampledSpectrum中,SPD将会被变换重采样进行降维,因此,光谱匹配曲线也需要在重采样到相同维度才能进行运算

1
2
3
4
5
6
<Spectral Data Declarations> =
static const int nCIESamples = 471;
extern const float CIE_X[nCIESamples];
extern const float CIE_Y[nCIESamples];
extern const float CIE_Z[nCIESamples];
extern const float CIE_lambda[nCIESamples];

CIE_lambda中记录的是每个采样点的波长,这里使用1nm为步长,CIE_X,Y,Z记录从360nm~830nm的光谱匹配曲线采样点

1
2
3
<SampledSpectrum Private Data> =
static SampledSpectrum X , Y , Z;
static float yInt;

由于光谱匹配曲线是固定的,因此使用static变量

XYZ匹配曲线计算放在初始化函数中,当程序启动时进行调用

1
2
3
4
5
6
<SampledSpectrum Public Methods> += 
static void Init()
{
<Compute XYZ matching functions for SampledSpectrum>
<Compute RGB to spectrum functions for SampledSpectrum>
}
1
2
3
4
5
6
7
8
9
10
<Compute XYZ matching functions for SampledSpectrum> =
for(int i = 0; i < nSpectralSamples; i++)
{
float wl0 = Lerp(float(i) / float(nSpectrualSamples) , sampledLambdaStart , sampledLambdaEnd);
float wl1 = Lerp(float(i+1) / float(nSpectrualSamples) , sampledLambdaStart , sampledLambdaEnd);
X.c[i] = AverageSpectrumSamples(CIE_lambda, CIE_X, nCIESamples, wl0, wl1);
Y.c[i] = AverageSpectrumSamples(CIE_lambda, CIE_Y, nCIESamples, wl0, wl1);
Z.c[i] = AverageSpectrumSamples(CIE_lambda, CIE_Z, nCIESamples, wl0, wl1);
yInt += Y.c[i];
}

现在我们有了XYZ匹配曲线的重采样数据,公式可以转化为用黎曼和表示:

$$x_\lambda \approx \frac{1} {\int Y(\lambda)d\lambda} \sum_i X_i c_i$$

$$y_\lambda \approx \frac{1} {\int Y(\lambda)d\lambda} \sum_i Y_i c_i$$

$$z_\lambda \approx \frac{1} {\int Y(\lambda)d\lambda} \sum_i Z_i c_i$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
<SampledSpectrum Public Methods> +=
void ToXYZ(float xyz[3]) const
{
xyz[0] = xyz[1] = xyz[2] = 0.0f;
for(int i = 0; i < nSpectralSamples; i++)
{
xyz[0] += X.c[i] * c[i];
xyz[1] += Y.c[i] * c[i];
xyz[2] += Z.c[i] * c[i];
}

xyz[9] /= yInt;
xyz[1] /= yInt;
xyz[2] /= yInt;
}

XYZ中的y与亮度密切相关.

1
2
3
4
5
6
7
8
9
10
<SampledSpectrum public Methods> += 
float y() const
{
float yy = 0.0f;
for(int i = 0; i < nSpectralSamples; i++)
{
yy += Y.c[i] * c[i];
}
return yy / yInt;
}

现在我们已经将SPD转换为了XYZ,那么如何将XYZ转化为RGB用于显示呢?

当我们将RGB显示在显示器上时,真实显示的光谱主要由三色光谱响应曲线的加权和确定.,由发光材料决定

LED,LCD,以及等离子体的三色光谱响应曲线不同,因此相同的SPD,在这三种情况下显示出来的RGB是不同的.
spectral response curves

在LCD,LED显示RGB(0.6,0.3,0.2)的光谱分别如下图所示:
SPD from display same rgb

可见SPD相差很大.因此,RGB作为颜色只在知道显示器属性的情况下才是有意义的.

给定一个SPD的$x_{\lambda},y_\lambda,z_\lambda$

在给定显示器的情况下,也就是给定三色光谱响应曲线$$R(\lambda),G(\lambda),B(\lambda)$$

RGB按照如下公式计算所得:

$$
\begin{align}
r = \int R(\lambda)S(\lambda)d\lambda &= \int R(\lambda)(x_\lambda X(\lambda) + y_\lambda Y(\lambda) + z_\lambda Z(\lambda))d\lambda \notag\\
&=x_\lambda \int R(\lambda)X(\lambda)d\lambda + y_\lambda \int R(\lambda)Y(\lambda)d\lambda + z_\lambda \int R(\lambda) Z(\lambda)d\lambda\notag
\end{align}
$$

$$
\begin{bmatrix}
r \\
g \\
b
\end{bmatrix}
=
\begin{bmatrix}
\int R(\lambda)X(\lambda)d\lambda & \int R(\lambda)Y(\lambda)d\lambda & \int R(\lambda)Z(\lambda)d\lambda\\
\int G(\lambda)X(\lambda)d\lambda & \int G(\lambda)Y(\lambda)d\lambda & \int G(\lambda)Z(\lambda)d\lambda \\
\int B(\lambda)X(\lambda)d\lambda & \int B(\lambda)Y(\lambda)d\lambda & \int B(\lambda)Z(\lambda)d\lambda
\end{bmatrix}
\begin{bmatrix}
x_\lambda \\
y_\lambda \\
z_\lambda
\end{bmatrix}
$$

对于高清电视而言:
$$
\begin{bmatrix}
r \\
g \\
b
\end{bmatrix}
=
\begin{bmatrix}
3.240479 & -1.537150 & -0.498535\\
-0.969256 & 1.875991 & 0.041556 \\
0.055648 & -0.204043 & 1.057311
\end{bmatrix}
\begin{bmatrix}
x_\lambda \\
y_\lambda \\
z_\lambda
\end{bmatrix}
$$

计算得到的RGB是在linear space,需要Gamma矫正才能变换到sRGB空间

1
2
3
4
5
6
7
<Spectrum Utility Declarations> +=
inline void XYZToRGB(const float xyz[3] , float rgb[3])
{
rgb[0] = 3.240479 * xyz[0] - 1.537150 * xyz[1] - 0.498535 * xyz[2];
rgb[1] =-0.969256 * xyz[0] + 1.875991 * xyz[1] + 0.041556 * xyz[2];
rgb[2] = 0.055648 * xyz[0] - 0.204043 * xyz[1] + 1.057311 * xyz[2];
}

逆矩阵可以将RGB转为XYZ

1
2
3
4
5
6
7
<Spectrum Utility Declarations> +=
inline void RGBToXYZ(const float rgb[3], float xyz[3])
{
xyz[0] = 0.412453 * rgb[0] + 0.357580 * rgb[1] + 0.180423 * rgb[2];
xyz[1] = 0.212671 * rgb[0] + 0.715160 * rgb[1] + 0.072169 * rgb[2];
xyz[2] = 0.019334 * rgb[0] + 0.119193 * rgb[1] + 0.950227 * rgb[2];
}

因此将SPD转为RGB:

1
2
3
4
5
6
7
<SampledSpectrum Public Methods> +=
void ToRGB(flaot rgb[3]) const
{
float xyz[3];
ToXYZ(xyz);
XYZToRGB(xyz,rgb);
}

介绍完了如何使用SPD计算RGB,那么如何通过RGB得到SPD?

通过测量得到以下数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
<Spectrual Data Declaration> +=
static const int nRGB2SpectSamples = 32;
extern const float RGB2SpectLambda[nRGB2SpectSamples];
extern const float RGBRefl2SpectWhite[nRGB2SpectSamples];
extern const float RGBRefl2SpectCyan[nRGB2SpectSamples];
extern const float RGBRefl2SpectMagenta[nRGB2SpectSamples];
extern const float RGBRefl2SpectYellow[nRGB2SpectSamples];
extern const float RGBRefl2SpectRed[nRGB2SpectSamples];
extern const float RGBRefl2SpecGreen[nRGB2SpectSamples];
extern const float RGBRefl2SpectBlue[nRGB2SpectSamples];

extern const float RGBIllum2SpectWhite[nRGB2SpectSamples];
extern const float RGBIllum2SpectCyan[nRGB2SpectSamples];
extern const float RGBIllum2SpectMagenta[nRGB2SpectSamples];
extern const float RGBIllum2SpectYellow[nRGB2SpectSamples];
extern const float RGBIllum2SpectRed[nRGB2SpectSamples];
extern const float RGBIllum2SpectGreen[nRGB2SpectSamples];
extern const float RGBIllum2SpectBlue[nRGB2SpectSamples];

如果RGB颜色用于描述光源的发射光,那么应该使用表示发射源的光谱能量分布的转换表进行计算.

RGBillum2Spect*使用的是D65光谱能量分布,为CIE用于表示正午日光的标准.

用于计算方便,可以将RGBRefl2Spect*,RGBillum2Spect*分布,在初始化阶段重采样为SampledSpectrum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<SampledSpectrum Private Data>
static SampledSpectrum rgbRelf2SpectWhite;
static SampledSpectrum rgbRelf2SpectCyan;
static SampledSpectrum rgbRelf2SpectMagenta;
static SampledSpectrum rgbRelf2SpectYellow;
static SampledSpectrum rgbRelf2SpectRed;
static SampledSpectrum rgbRelf2SpectGreen;
static SampledSpectrum rgbRelf2SpectBlue;

static SampledSpectrum rgbIllum2SpectWhite;
static SampledSpectrum rgbIllum2SpectCyan;
static SampledSpectrum rgbIllum2SpectMagenta;
static SampledSpectrum rgbIllum2SpectYellow;
static SampledSpectrum rgbIllum2SpectRed;
static SampledSpectrum rgbIllum2SpectGreen;
static SampledSpectrum rgbIllum2SpectBlue;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
<Compute RGB to spectrum functions for SampledSpectrum> =
float wl0 = Lerp(float(i) / float(nSpectralSamples),sampledLambdaStart, sampledLambdaEnd);
float wl1 = Lerp(float(i+1) / float(nSpectralSamples),sampledLambdaStart, sampledLambdaEnd);
rgbRefl2SpectWhite.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBRefl2SpectWhite,
nRGB2SpectSamples, wl0, wl1);
rgbRefl2SpectCyan.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBRefl2SpectCyan,
nRGB2SpectSamples, wl0, wl1);
rgbRefl2SpectMagenta.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBRefl2SpectMagenta,
nRGB2SpectSamples, wl0, wl1);
rgbRefl2SpectYellow.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBRefl2SpectYellow,
nRGB2SpectSamples, wl0, wl1);
rgbRefl2SpectRed.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBRefl2SpectRed,
nRGB2SpectSamples, wl0, wl1);
rgbRefl2SpectGreen.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBRefl2SpectGreen,
nRGB2SpectSamples, wl0, wl1);
rgbRefl2SpectBlue.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBRefl2SpectBlue,
nRGB2SpectSamples, wl0, wl1);

rgbIllum2SpectWhite.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBIllum2SpectWhite,
nRGB2SpectSamples, wl0, wl1);
rgbIllum2SpectCyan.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBIllum2SpectCyan,
nRGB2SpectSamples, wl0, wl1);
rgbIllum2SpectMagenta.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBIllum2SpectMagenta,
nRGB2SpectSamples, wl0, wl1);
rgbIllum2SpectYellow.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBIllum2SpectYellow,
nRGB2SpectSamples, wl0, wl1);
rgbIllum2SpectRed.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBIllum2SpectRed,
nRGB2SpectSamples, wl0, wl1);
rgbIllum2SpectGreen.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBIllum2SpectGreen,
nRGB2SpectSamples, wl0, wl1);
rgbIllum2SpectBlue.c[i] = AverageSpectrumSamples(RGB2SpectLambda, RGBIllum2SpectBlue,
nRGB2SpectSamples, wl0, wl1);

RGB转Spectrum

$$if \quad r < g < b$$

$$(r,g,b) = (r,r,r)+(0,g-r,g-r)+(0,0,b-g)=r(1,1,1)+(g-r)(0,1,1)+(b-g)(0,0,1)$$

$$if \quad r < b < g$$

$$(r,g,b)=(r,r,r)+(0,b-r,b-r)+(0,g-b,0)=r(1,1,1)+(b-r)(0,1,1)+(g-b)(0,1,0)$$

(1,1,1):White

(0,1,1):Cyan

(0,0,1):Blue

(0,1,0):Green

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
<Spectrum Utility Declaration> +=
enum SpectrumType {SPECTRUM_REFLECTANCE, SPECTRUM_ILLUMINANT};

<Spectrum Method Definitions> +=
SampledSpectrum SampledSpectrum::FromRGB(const float rgb[3] , SpectrumType type)
{
SampledSpectrum r;
if(type == SPECTRUM_REFLECTANCE)
{
<Convert reflectance spectrum to RGB>
}
else
{
<Convert illuminant spectrum to RGB>
}
return r.Clamp();
}

<Convert reflectance spectrum to RGB> =
if(rgb[0] <= rgb[1] && rgb[0] <= rgb[2])
{
<Compute reflectance SampledSpectrum with rgb[0] as minimum>
}
else if(rgb[1] <= rgb[0] && rgb[1] <= rgb[2])
{
<Compute reflectance SampledSpectrum with rgb[1] as minimum>
}
else
{
<Compute reflectance SampledSpectrum with rgb[2] as minimum>
}

<Compute reflectance SampledSpectrum with rgb[0] as minimum> =
r += rgb[0] * rgbRefl2SpectWhite;
if(rgb[1] <= rgb[2])
{
r += (rgb[1] - rgb[0]) * rgbRefl2SpectCyan;
r += (rgb[2] - rgb[1]) * rgbRefl2SpectBlue;
}
else
{
r += (rgb[2] - rgb[0]) * rgbRefl2SpectCyan;
r += (rgb[1] - rgb[2]) * rgbRefl2SpectGreen;
}

RGBSpectrum

RGBSpectrum使用R,G,B分量的加权和来表示SPDs

1
2
3
4
5
6
<Spectrum Declarations> +=
class RGBSpectrum : public CofficientSpectrum<3>
{
public:
<RGBSpectrum Public Methods>
};

FromRGB这个函数就简单了,因此我们存储的就是rgb

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<RGBSpectrum Public Methods> +=
static RGBSpectrum FromRGB(const float rgb[3], SpectrumType type = SPECTRUM_REFLECTION)
{
RGBSpectrum s;
s.c[0] = rgb[9];
s.c[1] = rgb[1];
s.c[2] = rgb[2];
return s;
}
<RGBSpectrum Public Methods> +=
void TOrgb(float* rgb) const
{
rgb[0] = c[0];
rgb[1] = c[1];
rgb[2] = c[2];
}

根据SPD计算RGB,通过光谱匹配函数计算XYZ,然后XYZ转为RGB

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
<RGBSpectrum Public Methods> +=
static RGBSpectrum FromSampled(const float* lambda, const float* v, int n)
{
float xyz[3] = {0,0,0};
float yint = 0.0f;
for(int i = 0; i < nCIESamples; i++)
{
yint += CIE_Y[i];
float val = InterpolateSpectrumSamples(lambda, v, n, CIE_lambda[i]);
xyz[0] += val * CIE_X[i];
xyz[1] += val * CIE_Y[i];
xyz[2] += val * CIE_Z[i];
}

xyz[0] /= yint;
xyz[1] /= yint;
xyz[2] /= yint;

return FromXYZ(xyz);
}

<Spectrum Method Definitions> +=
float InterpolateSpectrumSamples(const float* lambda, const float* vals, int n, float l)
{
if(l <= lambda[0]) return vals[0];
if(l >= lambda[n-1]) return vals[n-1];
for(int i=0; i < n-1; i++)
{
if(l >= lambda[i] && l <= lambda[i+1])
{
float t = (l - lambda[i]) / (lambda[i+1] - lambda[i]);
return Lerp(t , vals[i] , vals[i+1]);
}
}
}

LinearSpace RGB to sRGB

$$
\begin{equation}
C_{srgb}=
\begin{cases}
12.92C_{linear} & C_{linear} \leq 0.0031308 \notag\\[2ex]
(1+\alpha)C_{linear}^{\frac{1}{2.4}} - \alpha & C_{linear} > 0.0031308
\end{cases}
\end{equation}
$$

Reference

Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×