反射方向
折射方向
折射定律:$\quad$ $\eta_i \sin\theta_i = \eta_t sin\theta_t$
- $\eta_i$: 入射介质折射率
- $\eta_o$: 出射介质折射率
- $\theta_i$: 入射角
- $\theta_o$: 折射角
折射率与波长相关,因此,在两种不同媒介的交界面入射的自然光将会沿着多个方向散射,即色散
菲涅尔方程
当光经过两种不同折射率的界面时,在两者的交界处可能会同时发生光的反射与折射
菲涅尔方程描述了不同光波分量被折射和反射的情况
入射光的功率被界面反射的比例,称之为反射比$R$;折射的比例称之为透射比$T$
反射比和透射比的具体形式与入射光的偏振有关
垂直偏振光反射比:
$$R_\bot = (\frac{\eta_icos\theta_i - \eta_tcos\theta_t}{\eta_icos\theta_i + \eta_t\cos\theta_t})^2$$
平行偏振光反射比:
$$R_\parallel = (\frac{\eta_t \cos\theta_i - \eta_i\cos\theta_t}{\eta_t\cos\theta_i + \eta_i\cos\theta_t})^2$$
根据能量守恒,透射比都满足:$T = 1 -R$
图形学中通常考虑光是无偏振的,也就是偏振是等量的:$R = \frac{R_{|}+R_{\bot}}{2}$
反射和折射光的振幅与入射光的振幅比值通常称之为反射率($r$)和透射率($t$)
$$R = r^2 \quad T = (\frac{\eta_t\cos\theta_t}{\eta_1\cos\theta_i})t^2$$
导体不能透射光,但会部分入射光会被吸收转换为热能,常用的导体的菲涅尔方程如下:
$$r_|^2 = \frac{(\eta^2 + k^2)cos\theta_i^2 - 2\eta\cos\theta_i + 1}{(\eta^2 + k^2)cos\theta_i^2 + 2\eta\cos\theta_i + 1}$$
$$r_\bot^2 = \frac{(\eta^2 + k^2) - 2\eta\cos\theta_i + \cos\theta_i^2}{(\eta^2 + k^2) + 2\eta\cos\theta_i + \cos\theta_i^2}$$
因为导体不能透射光,因此方程中并无透射角与透射面的折射率
BRDF
接下来讲讲镜面反射和镜面折射的BRDF
由于菲涅尔方程给出了光被反射的量$F_r(\omega_o)$,因此:
$$L_o(\omega_r) = \int f_r(p, \omega_i, \omega_r )L_i(\omega_i)cos(\theta)d\omega_i = F_r(\omega_o)L_i(\omega_i) = F_r(\omega_i)L_i(\omega_i)\tag{1}$$
$\omega_o$为$\omega_i$关于表面法线的反射向量,$\theta_i = \theta_o$,因此,$F_r(\omega_o)=F_r(\omega_i)$
该BRDF可以使用脉冲函数进行构造:
$$f_r(p , \omega_o , \omega_i) = f \times \delta(\omega_i - \omega_r) = f \times \delta(\cos\theta_i - \cos\theta_r)\delta(\phi_i - \phi_r \pm \pi)\tag{2}$$
因此:
$$L_o(\theta_o,\phi_o) = \int_\Omega f \times \delta(cos\theta_i - cos\theta_r) \delta(\phi_o - \phi_r \pm \pi) L_i(\theta_i,\phi_i)|cos\theta_i|d\omega_i = f \times L_i(\theta_r,\phi_r \pm \pi)|cos\theta_i|$$
结合方程(1):
$$L_o(\omega_o) = f \times L_i(\theta_r,\phi_r \pm \pi)|cos\theta_i| = F_r(\omega_i)L_i(\omega_i)$$
$$\Rightarrow f = \frac{F_r(\omega_o)}{|cos\theta_i|}$$
结合方程(2):
$$\Rightarrow f_r(p , \omega_o , \omega_i) = F_r(\omega_o)\frac{\delta(\omega_i - R(\omega_o , n))}{|\cos\theta_i|}$$
$R(\omega_o , n)$为$\omega_o$关于表面法线的镜面反射方向
此时$L_o(\theta_o , \phi_o) = F_r(\omega_o)L_i(\theta_r , \phi_r\pm \pi)$
前面说过了$F_r(\omega_o)$表示入射光被反射的量
至此,镜面反射的BRDF计算完毕
讲完镜面反射的BRDF,接下来讲讲镜面折射的BRDF
这里我们使用$\tau = 1 - F_r(\omega_i)$表示入射能量被折射的量
因此,微分通量可以表示如下:
$$d\Phi_o = \tau d\Phi_i$$
$$L_o cos\theta_o dA d\omega_o = \tau(L_i\cos\theta_i dAd\omega_i)$$
表示为球面坐标如下:
$$L_o cos\theta_o dA \sin\theta_o d\theta_o d\phi_o = \tau(L_i\cos\theta_idA\sin\theta_id\theta_id\phi_i)$$
由于$\eta_i \sin\theta_i = \eta_o \sin\theta_o$
因此对其求微分可得:
$$\eta_o cos\theta_o d\theta_o = \eta_i\cos\theta_id\theta_i$$
因此:
$$\frac{cos\theta_od\theta_o}{\cos\theta_id\theta_i} = \frac{\eta_i}{\eta_o}$$
又因为$\frac{\sin\theta_o}{\sin\theta_i} = \frac{\eta_i}{\eta_o}$
因此:
$$\frac{\sin\theta_o\cos\theta_od\theta_o}{\sin\theta_i\cos\theta_id\theta_i} = \frac{\eta_i^2}{\eta_o^2}$$
所以
$$L_o\eta_i^2d\phi_o = \tau L_i\eta_o^2 d\phi_i$$
由于$\phi_i = \phi_o + \pi$,因此$d\phi_i = d\phi_o$
所以:
$$L_o = \tau L_i\frac{\eta_o^2}{\eta_i^2}$$
因此镜面折射的BRDF为:
$$f_t(p , \omega_i , \omega_o) = \frac{\eta_o^2}{\eta_i^2}(1 - F_r(\omega_i))\frac{\delta(\omega_i - T(\omega_o , n))}{|\cos\theta_i|}$$
$T(\omega_o , n)$为$\omega_o$关于表面法线的镜面折射向量
Comments